If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+8t-1=0
a = 16; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·16·(-1)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*16}=\frac{-8-8\sqrt{2}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*16}=\frac{-8+8\sqrt{2}}{32} $
| 9x+5x-2x=68+4 | | 270x+26=1325 | | 39=x-17 | | t/1+3=4 | | 2x=-6x-16 | | 4y-5=17y+21 | | 26-3x=1 | | g/2+12=16 | | 3x-5(x-5)=-8+5x-2 | | A=8x+10,B=5x+25 | | 201-w=260 | | 5q+5=55 | | -2x+5(-2x-3)=-99 | | 7-2m=17 | | 3(3x-6)=-54 | | 4+6=6x+4 | | 8(x+3)=10x-1 | | 8-3(3x+6)=-82 | | 12x+2=8x+40 | | 2/3x=245 | | b=+(25+7) | | 156=-12(x+5) | | h(4)=-5(4)^2+90(4) | | 3k-5=8 | | -7(4x-1)=530 | | -6(2m-5)=3m | | 1+x=2x-10 | | 4(x+x+1)=(3x)+18 | | 2(3x-6)=180 | | 6x-(x-2.8)=(0.2x+1.5)-0.7 | | 8(v+9)=-7v-3 | | 9-3b=-6 |